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A fast, matrix-free implicit method has been developed to solve the three-dimen-
sional compressible Euler and Navier—Stokes equations on unstructured meshes.
An approximate system of linear equations arising from the Newton linearization
is solved by the GMRES (generalized minimum residual) algorithm with a LU-
SGS (lower—upper symmetric Gauss—Seidel) preconditioner. A remarkable feature
of the present GMRES+LU-SGS method is that the storage of the Jacobian matrix
can be completely eliminated by approximating the Jacobian with numerical fluxes,
resulting in a matrix-free implicit method. The method developed has been used to
compute the compressible flows around 3D complex aerodynamic configurations for
a wide range of flow conditions, from subsonic to supersonic. The numerical results
obtained indicate that the use of the GMRES+LU-SGS method leads to a significant
increase in performance over the best current implicit methods, GMRES+ILU and
LU-SGS, while maintaining memory requirements similar to its explicit counterpart.
An overall speedup factor from eight to more than one order of magnitude for all test
cases in comparison with the explicit method is demonstratedsess Academic Press

1. INTRODUCTION

The use of unstructured meshes for computational fluid dynamics problems has bec
widespread due to their ability to discretize arbitrarily complex geometries and due
the ease of adaptation in enhancing the solution accuracy and efficiency through the
of adaptive refinement techniques. In recent years, significant progress has been m:
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developing numerical algorithms for the solution of the compressible Euler and Nav
Stokes equations on unstructured grids.

Early efforts in the development of temporal discretization methods using unstructt
grids focused on explicit schemes. Usually, explicit temporal discretizations such as |
tistage Runge—Kutta schemes are used to drive the solution to steady state. Accele
techniques such as local time-stepping and implicit residual smoothing have also been
bined in this context. In general, explicit schemes and their boundary conditions are ea
implement, vectorize and parallelize, and require only limited memory storage. Howe
for large-scale problems and especially for the solution of the Navier—Stokes equation:
rate of convergence slows down dramatically, resulting in inefficient solution techniqt
In order to speed up convergence, a multigrid strategy or an implicit temporal discretize
is required.

In general, implicit methods require the solution of a linear system of equations aris
from the linearization of a fully implicit scheme at each time step or iteration. The m
widely used methods to solve a linear system on unstructured grids are iterative sol
methods and approximate factorization methods. Significant efforts have been mas
develop efficient iterative solution methods. These range from Gauss—Seidel to Krylov
space methods that use a wide variety of preconditioners (see, e.g., Stoufflet [1], Batin:
Venkatakrishnaet al. [3], Knight [4], Whitaker [5], Luoet al. [6], and Barthet al. [7]). The
most successful and effective iterative method is to use the Krylov subspace methods
such as GMRES and BICGSTAB with an ILU (incomplete lower—upper) factorizati
preconditioner. The drawback is that they require a considerablece amount of mel
to store the Jacobian matrix, which may be prohibitive for large problems. Recently,
lower—upper symmetric Gauss-Seidel method developed first by Jameson and Yoor
on structured grids has been successfully generalized and extended to unstructured n
by several authors [11-13]. The most attractive feature of this approximate factorize
method is that the evaluation and storage of the Jacobian matrix inherent in the ori
formulation of the LU-SGS method can be completely eliminated by making some app
imations to the implicit operator. The resulting LU-SGS method can be made even che
than the explicit method per time step. However, this method is less effective than the |
efficient iterative methods such as GMRES+ILU, because of slow convergence, requ
thousands of time steps to achieve a steady state.

The objective of the effort discussed in this paper is to develop a fast implicit method
solving compressible flow problems around 3D complex, realistic aerodynamic config
tions on unstructured grids. Typically, hundreds of thousands of mesh points are nece
to represent such engineering-type configurations accurately. Any implicit methods re«
ing the storage of the Jacobian matrix would be impractical, if not impossible to use to s
such large-scale problems, where the storage requirement can easily exceed the m
limitation of present computers. In the present work a system of linear equations, :
ing from an approximate linearization of a fully implicit temporal discretization at ea
time step, is solved iteratively by a GMRES algorithm with an LU-SGS precondition
The idea behind this is to combine the efficiency of the iterative methods and low m
ory requirement of approximate factorization methods in an effort to develop a fast,
storage implicit method. An apparent advantage of the LU-SGS preconditioner is th
uses the Jacobian matrix of the linearized scheme as a preconditioner matrix, as com
with ILU preconditioner and, consequently, does not require any additional memory <
age and computational effort to store and compute the preconditioner matrix. Furthern
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the storage of the approximate Jacobian matrix can be completely eliminated by app
mating the Jacobian with numerical fluxes, which will lead to a fast, low-storage impli
algorithm. The matrix-free implicit method developed has been used to compute a \
range of test problems and has been compared with a well-known GMRES+ILU algori
and an approximately factored implicit algorithm LU-SGS. The new algorithm is found
offer substantial CPU time savings over the best currentimplicit methods, while maintair
a memory requirement competitive with the explicit method.

2. GOVERNING EQUATIONS

The Navier—Stokes equations governing unsteady compressible viscous flows ce
expressed in the conservative form as

aU  aF  3G!
— = 2.1

ot + 0X; 0X; (1)
where the summation convention has been employed. The unknown Weatwiscid flux
vectorF, and viscous flux vectds are defined by

0 _ pUj _ 0
U=|pu |, F'= puiuj + psij |, Gl = 9ij . (2.2)
pe uj(pe+ p) Ui + k%

Herep, p, e T, andk denote the density, pressure, specific total energy, temperature,
thermal conductivity of the fluid, respectively, and is the velocity of the flow in the
coordinate directiorx; . This set of equations is completed by the addition of the equati

of state,
1 1
p=(@u—-Dp e—Sujyj |, T= e— Sujy; C,, (2.3)

which is valid for perfect gas, whegeis the ratio of the specific heats, aGglis the specific
heat at constant volume. The components of the viscous stress égnaie given by

ou; 8Uj dUk
= ) 2y 2.4
% M(an * X > + X 24

The thermal conductivitk and viscosity coefficient are assumed to be a function of the
temperature and are determined using Sutherland’s empirical relation. It is assumed t
andu are related by Stokes’ hypothesis

an
A=——. 25
5 (25)
The left-hand side of Eqg. (2.1) constitutes the Euler equations governing unsteady ¢
pressible inviscid flows.
In the sequel, we assume tifais the flow domain[ is its boundary, and;j is the unit

outward normal vector to the boundary.
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3. HYBRID DISCRETE FORMULATION

Assuming2 is a classical triangulation a2, N, is a standard linear finite element
shape function associated with a nddeandC, is a dual mesh cell associated with the
node, the hybrid finite volume and finite element formulation used for discretization of
Navier—Stokes equations is

find Un, € 7y, such that foreacN; (1 <1 <n)

‘ j (3.1)
/ %dgﬁ-/ F'(Uh)-njd[‘:/ MN| aq,
C ot ac, Qn 3Xj

where7y, is a discrete approximation space of suitable continuous functions. Inviscid flu
are discretized using a cell-vertex finite volume formulation, where the control volumes
nonoverlapping dual cells constructed by the median planes of the tetrahedra. In the pr
study the numerical flux functions for inviscid fluxes at the dual mesh cell interface are c
puted using the AUSM+ [14] (advection upwind splitting method) scheme. AMUSCL [1
approach is used to achieve high-order accuracy. The Van Albada limiter based on prin
variables is used to suppress the spurious oscillation in the vicinity of the discontinui
The implementation of the precise MUSCL strategy used in the present work can be ft
in Ref. [21]. Viscous flux terms are evaluated using a linear finite element approximat
which is equivalent to a second-order accurate central difference.

Equation (3.1) can then be rewritten in a semi-discrete form as

U
Vi a—tl =R, (3.2)
whereV, is the volume of the dual mesh cell (equivalent to the lumped mass matrix in
finite element), andR; is the right-hand side residual and equals zero for a steady-st
solution.

4. IMPLICIT TIME INTEGRATION

In order to obtain a steady-state solution, the spatially discretized Navier—Stokes e
tions must be integrated in time. Using Euler implicit time-integration, Eq. (3.2) can
written in discrete form as

AUD
Vi—- =R, (4.1)
At
whereAt is the time increment andU" is the difference of an unknown vector betweel
time levelsn andn+1; i.e.,

AU" = UM ", (4.2)
Equation (4.1) can be linearized in time as

AU R

Vi
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whereR; is the right-hand side residual and equals zero for a steady-state solution. Wri
the equation for all nodes leads to the delta form of the backward Euler scheme

AAU =R, (4.4)
where
\Y oR"
= — — . (4.5)
At ou

Note that asAt tends to infinity, the scheme reduces to the standard Newton’s method
solving a system of nonlinear equations. Newton’s method is known to have a quad
convergence property. The teréiR/0U represents symbolically the Jacobian matrix. |
involves the linearization of both inviscid and viscous flux vectors. In order to obtain |
guadratic convergence of Newton’s method, the linearization of the numerical flux func
must be virtually exact. Unfortunately, explicit formation of the Jacobian matrix resulti
from the exact linearization of any second-order numerical flux functions for inviscid flu
can require excessive storage and is extremely expensive, if not impossible to evalua
order to reduce the number of nonzero entries in the matrix and to simplify the linearizat
only afirst-order representation of the numerical fluxes is linearized. This resultsinthe g
of the sparse matri¥R/9U being identical to the graph of the supporting unstructure
mesh. In addition, the following simplified flux function is used to obtain the left-hand si
Jacobian matrix,

1 1
Ri (Ui, Uj, njj) = E(F(Ui’ nij) + FUj, nij)) — §|)vij [(Uj —Uj), (4.6)
where
il = IVij - ij | + Cij + —— 4.7)
Oij 1Xj — Xil

wheren;; is the unit vector normal to the cell interfadg; is the velocity vector, an@;;
is the speed of sound. Note that this flux function is derived by replacing the Roe’s me
by its spectral radius in the well-known Roe’s Flux function [16],

’ 1 1 ~
R™ = E(F(Ui, nij) + F(Uj, nij)) — §|J(U)|(Uj - Up) (4.8)

for the inviscid flux vector, and the viscous Jacobian matrix is simply approximated by
spectral radius in the above linearization process. The linearization of flux function (-
yields

oR; . 1 _ B
U, = E(J(UI) =+ [Aij 1D (4.9)
oR; . 1 N
TU] = E(J(U]) [Aij 1), (4.10)

whereJ = 9F/dU represents the Jacobian of the inviscid flux vector. The penalty for m
ing these approximations in the linearization process is that the quadratic convergen
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Newton’s method can no longer be achieved because of the mismatch and inconsisten
tween the right- and left-hand sides in Eq. (4.4). Although the number of time steps (Nev
iterations, ifAt tends to infinity) may increase, the cost per each time step is significar
reduced: it takes less CPU time to compute the Jacobian matrix and the conditionir
the simplified Jacobian matrix is improved, thus reducing computational cost to solve
resulting linear system.

As only a first-order representation of the numerical fluxes is considered, the numbe
nonzero entries in each row of the matrix is related to the number of edges incident tc
node associated with that row. In other words, each gdgél guarantee nonzero entries in
theith column andjth row and, similarly, thgth column andth row. In addition, nonzero
entries will be placed on the diagonal of the matrix. Using an edge-based data structur:
left-hand side Jacobian matrix is stored in upper, lower, and diagonal forms, which ca
expressed as

1
U= E(\](Uj»nij)_p\ij“)v (4.11)
1
L= 5(—J(Ui,nij)—|kij||), (4.12)
D= LW ng) + g (4.13)
= +§j:§<(., i)+ 124 - .

Note thatU, L, and D represent the strict upper matrix, the strict lower matrix, ar
the diagonal matrix, respectively. Both upper and lower matrices require a storag
nedgex negnsx negnsand the diagonal matrix needs a storagadin x neqnsx neqns
wherenpoinis the number of grid point:iegns(=5 in 3D) is the number of unknown
variables andhedgeis the number of edges. Note that in 8Bdge~ 7npoin Clearly, the
upper and lower matrix consume substantial amounts of memory, taking 93% of the stc
required for left-hand side Jacobian matrix.

Equation (4.4) represents a system of linear simultaneous algebraic equations and
to be solved at each time step. The most widely used methods to solve this linear
tem are iterative solution methods and approximate factorization methods. Recently
lower-upper symmetric Gauss—Seidel method developed first by Jameson and Yoon
on structured grids has been successfully generalized and extended to unstructured n
by several authors [11-13]. The LU-SGS method is attractive because of its good stal
properties and competitive computational cost in comparison to explicit methods. In
method, the matripA is split in three matrices, a strict lower matilix a diagonal matrix
D, and a strict upper matri. This system is approximately factored by neglecting tr
last term on the right-hand side of Eq. (4.14). The resulting equation can be solved ir
two steps shown in Egs. (4.15) and (4.16), each of them involving only simple block ma
inversions:

(D+L)D™XD+U)AU =R+ (LD"U)AU. (4.14)
Lower (forward) sweep:

(D + L)AU* = R. (4.15)
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Upper (backward) sweep:
(D+U)AU = DAU". (4.16)

Both lower and upper sweeps can be vectorized by appropriately reordering the
points [13], resulting in a very efficient algorithm. It is found that the CPU cost of o
LU-SGS step is approximately 50% of one three-stage Runge—Kutta explicit step.

It is clear that the above algorithm involves primarily the Jacobian matrix-solution
cremental vector product. Such operation can be approximately replaced by compi
increments of the flux vectakF:

JAU ~ AF = F(U + AU) — F(U). (4.17)

This idea of the matrix-free approach, in which the product of Jacobian matrix and in
mental vector is approximated by the increment of the flux vector, was first introducet
the work of Sharov and Nakahashi [13]. The forward sweep and backward sweep step
then be expressed as

1
AUf = DR — 3 S(AF] — [ [AUDs; | (4.18)

jtj<i

AU; = AUf — D! j;i %(AF; — |xijlAU)S; . (4.19)
The most remarkable achievement of this approximation is that there is no need to stor
upper and lower matridd andL, which substantially reduces the memory requirement
It is found that this approximation does not compromise any numerical accuracy, anc
extra computational cost is negligible.

Although the LU-SGS method is more efficient than its explicit counterpart, a signific
number of time steps are still required to achieve the steady-state solution, due to the n
of the approximation factorization schemes. One way to speed up the convergence is t
iterative methods. In this work, the system of linear equations is solved by the general
minimal residual (GMRES) method of Saad and Schultz [8]. This is a generalizatior
the conjugate gradient method for solving a linear system where the coefficient mz
is not symmetric and/or positive definite. The use of GMRES combined with differe
preconditioning techniques is becoming widespread in the CFD community for the solu
of the Euler and Navier—Stokes equations [3, 5-7]. GMRES minimizes the norm of
computed residual vector over the subspace spanned by a certain number of ortho
search directions. It is well known that the speed of convergence of an iterative algori
for a linear system depends on the condition number of the matXMRES works best
when the eigenvalues of matriare clustered. The easiest and the most common way
improve the efficiency and robustness of GMRES is to use preconditioning to attemy
cluster the eigenvalues at a single value. The preconditioning technique involves solvir
equivalent preconditioned linear system,

AAU =R, (4.20)

instead of the original system (4.4), in the hope tAas well conditioned. Left precondi-
tioning involves premultiplying the linear system with a matrix as

P~1AAU = PR, (4.21)
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where P is the preconditioning matrix. The best preconditioning matriAfeould cluster
as many eigenvalues as possible at unity. Obviously, the optimal choi&d4, in which
case the underlying matrix problem for GMRES is trivially solved with one Krylov vectc
The motivation for preconditioning is twofold: (a) reduce the computational effort requit
to solve the linearized system of equations at each time-step; (b) reduce the total numt
time steps required to obtain a steady state solution. Preconditioning will be cost-effe
only if the additional computational work incurred for each subiteration is compensatec
by a reduction in the total number of iterations to convergence. In this way, the total co:
solving the overall nonlinear system is reduced. In the present work, the LU-SGS prese
above is used as a preconditioner, i.e.,

P=(D+L)DXD+U). (4.22)

A clear advantage of the LU-SGS preconditioner is that it uses the Jacobian matri
the linearized scheme as a preconditioner matrix, as compared with ILU preconditic
Consequently it does not require any additional memory storage and computational e
to store and compute the preconditioner matrix. The preconditioned restarted GM|
algorithm is described below.

ALGORITHM. Restarted preconditioned GMRER(

Forl =1, mdo m restart iterations
Vo = R — AAUg initial residual
ro:=P v preconditioning step
B:=lroll2 initial residual norm
Vi:=ro/B define initial Krylov
forj =1,kdo inner iterations
yj = Av; matrix—vector product
w;j =P ly; preconditioning step
Fori=1,jdo Gram-Schmidt step
hi,j = (Wj , Vi)
Wj =W — hi,jVi
EndDo
hjiej = lwjl2
Vig1:=Wj/hji1 define Krylov vector
EndDo

z:=miny||Ber — HZ|, least squares solve
AU:=AUg+ >, viz; approximate solution
if |8e1 — Hz||» < € exit convergence check
AUg:= AU restart

EndDo

Note that the above GMRES algorithm only requires matrix—vector products, the s:
technique used in the LU-SGS method can be applied to eliminate the storage of the
and lower matrices.

The present GMRES+LU-SGS method only requires the storage of the diagonal matri
addition, a storage corresponding ta 2edgeis required for the two index arrays, which
are necessary to achieve the vectorization of LU-SGS method. The need for additi
storage associated with the GMRES algorithm is an array of(kize2) x negnsx npoin,
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wherek is the number of search directions. Since the GMRES+LU-SGS is complet
separated from the flux computation procedure, memory, which is used to compute fl
can be used by the GMRES+LU-SGS. Overall, the extra storage of the GMRES+LU-¢
method is approximately 10% of the total memory requirements.

5. NUMERICAL RESULTS

The present implicit method has been used to compute a variety of compressible
problems for a wide range of flow conditions, from subsonic to supersonic, for both invis
and viscous flows, in both 2D and 3D. Only a few typical examples in 3D are preser
here to demonstrate the effectiveness and robustness of the present implicit method ov

FIG.1. (a)Surface mesh used for computing channel flow (nele68,097, npoir= 13,091, nbour-4,442).
(b) Computed pressure contours on the channel surfadg at 0.5. (¢) Computed Mach number contours on the
channel surface afl;, =0.5.
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FIG.1. (d)Convergence history versus time steps for subsonic channel flow using different schemes: ex|
GMRES+ILU, LU-SGS, GMRES+LU-SGS, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS. (e) Cc
vergence history versus CPU time for subsonic channel flow using different schemes: explicit, GMRES+
LU-SGS, GMRES+LU-SGS, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS.

existing implicit methods. No attempt has been made to use our GMRES+ILU methoc
to solve the Navier—Stokes equations and large-scale problems, as its storage requir
exceeds the memory limitation of the computer available to us.

All of the grids used here were generated by the advancing front technique [17].
computations were started with uniform flow. The relafivenorm of the density residual
is taken as a criterion to test convergence history. The solution tolerance for GMRE
set to 0.1 with 10 search directions and 20 iterations. We observed that during the firs
time steps, more iterations are spent to solve the system of the linear equations: ev
iterations cannot guarantee that the stopping criterion will be satisfied for some proble
However, it only takes four or five iterations to solve the linear equations at a later ti
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FIG. 1. (f) Convergence history of linear system at different time-steps for subsonic flow by matrix-fr

GMRES+LU-SGS method. (g) Effect of CFL number on convergence history by matrix-free LU-SGS met|
for subsonic flow.

and global convergence is not affected by a lack of linear system convergence durin
first few time steps.

A. Inviscid Subsonic Flow in a Channel with a Circular Bump on the Lower Wall

The first example is the well-known Ni’s test case: a subsonic flow in a channel wit
10% thick circular bump on the bottom. The length of the channel is 3, its height is 1, .
its width is 0.5. The inlet Mach number is 0.5. This is a three-dimensional simulation
a two-dimensional flow. Since no shock waves are present in the flow fields, all soluti
were obtained using a second-order scheme without any limiters. The mesh, which con
13,891 grid points, 68,097 elements, and 4442 boundary points is depicted in Fig. 1a.
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FIG. 1. (h) Convergence history of the residual for coarse and fine meshes for subsonic flow by explicit
thod. (i) Convergence history of the residual for coarse and fine meshes for subsonic flow by GMRES+LU-
implicit method.

computed Mach number and pressure contours in the flow field are shown in Figs. 1k
1c, respectively. Figures 1d and 1e display a comparison of convergence histories amol
explicit scheme, the GMRES+ILU scheme, the LU-SGS scheme, the GMRES+LU-S
scheme, the matrix-free LU-SGS scheme, and the matrix-free GMRES+LU-SGS sch
versus time steps and CPU time, respectively. The explicit method used a three-stage R
Kutta time-stepping scheme with local time stepping and implicit residual smoothing. -
computation was advanced with a CFL number of 4. A CFL number of 10,000 was u
by all implicit methods in the computation. It is clear that GMRES+LU-SGS metho
are superior to both GMRES+ILU and LU-SGS methods. The present GMRES+LU-S
method is over 100 times faster than its explicit counterpart for this particular case. -
is due to the fact that the convergence of the explicit method deteriorates dramaticall;
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a low-speed flow problem. From Fig. 1e we observe that both the matrix-free LU-S
scheme and the matrix-free GMRES+LU-SGS scheme yield a convergence history
is identical to their respective matrix counterparts. This indicates that both matrix-f
schemes yield solutions that are identical to their matrix counterparts. However, the ma
free GMRES+LU-SGS scheme is slightly more expensive than its matrix counterpart, a
can see from Fig. 1f. This is due the fact that for each GMRES iteration, the former invol
the numerical flux computation, while the latter involves the computation of a matrix vec
product, which is apparently cheaper to calculate. It is worth noting that per time step
present LU-SGS method costs approximately half of a three-stage Runge—Kutta ex|
method with a residual smoothing. However, the cost of the GMRES+LU-SGS method
time step is not fixed, as more iterations and, therefore, more CPU time, are require
solve the linear system at earlier time steps. This is shown in Fig. 1f, where the converg
history of the linear system at different time steps using the matrix-free GMRES+L
SGS method is displayed. Typically, only a few iterations are sufficient to meet the <
criterion atlatter time-steps. Finally, Fig. 1gillustrates the convergence history of matrix-1
LU-SGS method for different CFL number. Although, the LU-SGS method is stable fo

s

.

FIG.2. (a)Upperand lower surface mesh used for M6wing configuration (nel@#i,098, npoir= 136,051,
nboun=20,762). (b) Computed pressure contours on the upper and lower surfdce-20.84 ando = 3.06°.
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FIG. 2. (c) Comparison between computed and experimental surface pressure coefficient for wing sect
20% semispan. (d) Comparison between computed and experimental surface pressure coefficient for wing
at 44% semispan. (e) Comparison between computed and experimental surface pressure coefficient fo
section at 65% semispan. (f) Comparison between computed and experimental surface pressure coeffici
wing section at 80% semispan. (g) Comparison between computed and experimental surface pressure coe
forwing section at 90% semispan. (h) Comparison between computed and experimental surface pressure coe
for wing section at 95% semispan.
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FIG. 2. (i) Residual convergence history versus time steps for Méwing using different schemes: expl
matrix-free LU-SGS, GMRES+ILU, and matrix-free GMRES+LU-SGS. (j) Residual convergence history ver

CPU time for M6wing using different schemes: explicit, matrix-free LU-SGS, GMRES+ILU, and matrix-fre
GMRES+LU-SGS.

very large CFL number, the convergence history is almost indistinguishable for all the tt
CFL numbers used.

Finally, the same computation has been performed on a finer mesh to study the be
ior of convergence history as the grid is refined. The refined mesh contains 99,683
points, 533,060 elements, and 17,391 boundary points. Figures 1h and 1i show the cc
gence histories of the residual for coarse and finer grids using the explicit method an
matrix-free GMRES+LU-SGS method, respectively. As expected, the explicit method
the refined mesh requires approximately twice the number of time steps to achieve the
convergence; the behavior of convergence history for the implicit method is quite sinr
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as on a coarse mesh, although the rate of convergence does slow down, demonstratir
the advantage of the present implicit method is not diminished for finer grids.

B. ONERA M6 Wing Configuration

The second, well-documented case is the inviscid transonic flow over a ONERA M6 w
configuration. The M6 wing has a leading-edge sweep angle°gpfBlaspect of 3.8, and a
taper ratio of 0.562. The airfoil section of the wing is the ONERA “D” airfoil, which is a 10¢
maximum thickness-to-chord ratio conventional section. The flow solutions are prese
at a Mach number of 0.84 and an angle of attack of 3.06. The mesh used in the comput
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FIG. 3. (a) Surface mesh used for Wing/Pylon/Finned-Store configuration (nel&/329,694, npoia-
239,547, nbour=27,359). (b) Computed pressure contours on the upper suraftk,at 0.95 anda =0°.
(c) Computed pressure contours on the lower suraféé. at= 0.95 ando = 0°.
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FIG. 3. (d) Residual convergence history versus time steps for Wing/Pylon/Finned-Store configura
using matrix-free LU-SGS and matrix-free GMRES+LU-SGS. (e) Residual convergence history versus ¢
time for Wing/Pylon/Finned-Store configuration using different schemes: matrix-free LU-SGS and matrix-
GMRES+LU-SGS.

consists of 741,095 elements, 136,051 grid points, and 20,762 boundary points. The
and surface meshes are shown in Fig. 2a. The computed pressure contours on the upy
lower surfaces are displayed in Fig. 2b. The upper surface contours clearly show the sh
captured lambda-type shock structure formed by the two inboard shock waves, which rr
together near 80% semispan to form the single strong shock wave in the outboard regi
the wing. The computed pressure coefficient distributions are compared with experime
data [18] at six spanwise stations in Figs. 2c—2h. We can observe that there is only
grid point within the shock structure; this demonstrates the sharp shock-capturing at
of AUSM+ scheme. The results obtained compare closely with experimental data, ex
at the root stations, due to lack of viscous effects. Figures 2i and 2j display a compar
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FIG. 3. (f) Effect of CFL number on convergence history for for Wing/Pylon/Finned-Store configurati
using matrix-free LU-SGS. (g) Effect of CFL number on convergence history for for Wing/Pylon/Finned-St
configuration using matrix-free GMRES+LU-SGS.

of convergence histories among the explicit scheme, matrix-free LU-SGS sche
GMRES+ILU scheme, and matrix-free GMRES+LU-SGS scheme versus time steps
CPU time, respectively. GMRES+LU-SGS methods provide the best convergence
formance. The present GMRES+LU-SGS method is about three times faster thar
GMRES+ILU method, about six times faster than the LU-SGS methods and 14 tir
faster than its explicit method.

C. Wing/Pylon/Finned-Store Configuration

The third test case is conducted for a wing/pylon/finned-store configuration reporte
Ref. [19]. The configuration consists of a clipped delta wing with astseep composed
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FIG. 4. (a) Surface mesh used for computing internal supersonic flow (nel&42,895, npoir= 106,285,
nboun=30,094). (b) Computed density contours for supersonic inlet floy-£\8). (c) Computed Mach number
contours for supersonic inlet flow (V= 3). (d) Computed pressure contours for supersonic inlet floy£\8).

of a constant NACA64010 symmetric airfoil section. The wing has a root chord of 16 |
a semispan of 13 in., and a taper ratio of 0.134. The pylon is located at the midspan st
and has a cross section characterized by a flat plate closed at the leading and trailing
by a symmetrical ogive shape. The width of the pylon is 0.294 in. The four fins on the sf
are defined by a constant NACAQ0008 airfoil section with a leading-edge sweep ahd5

atruncated tip. The mesh used in the computation is shown in Fig. 3a. It contains 1,32¢
elements, 239,547 grid points, and 27,359 boundary points. The flow solutions are pres
at a Mach number of 0.95 and an angle of attack’'ofigures 3b and 3c show the pressur
contours on the upper and lower wing surface, respectively. Because of large size of me:
attempt has been made using matrix LU-SGS and GMRES+LU-SGS methods to comn
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FIG. 4. (e) Residual convergence history versus time steps for supersonic inlet configuration using diffe

schemes: matrix-free LU-SGS, matrix-free GMRES+LU-SGS, and explicit method. (f) Residual converge

history versus CPU time for supersonic inlet configuration using different schemes: matrix-free LU-SGS, me
free GMRES+LU-SGS, and explicit method.

this problem. Figures 3d and 3e display a comparison of convergence histories bet
a matrix-free LU-SGS scheme and a matrix-free GMRES+LU-SGS scheme versus
steps and CPU time, respectively. Again, the GMRES+LU-SGS method provides fe
convergence than the LU-SGS method. Figures 3f and 3g illustrate the convergence hi
using different CFL numbers of GMRES+LU-SGS and LU-SGS methods, respectiv
Again, we can see that, although the LU-SGS method is stable for a very large CFL nun
the convergence history is almost indistinguishable for all the three CFL numbers u
However, a substantial gain can be achieved by using a larger CFL number for GMR

LU-SGS method, although no significant difference can be observed once the CFL nu
is large enough.
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D. Supersonic Duct Flow

This internal inviscid supersonic flow case, taken from Nakahashi and Saito [20], re|
sents part of a scramjet intake. The inlet Mach number is 3. The total length of the devi
| = 8.0, and the element size was set uniformly throughout the domais @03. The mesh
shown in Fig. 4a consists of 542,895 elements, 106,285 grid points, and 30,094 bour
points. The computed density, Mach numbers, and pressure contours are shown in Fig

P
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FIG.5. (a) Surface mesh used for flat plate configuration (neteBi,885, npoin= 15,694, nbous= 3,774).
(b) Computed Mach number contours for flat plate af M0.4,« = 0.0, and Re= 10,000. (c) Computed boundary
layer velocity profile over a flat plate at &= 0.4, « = 0.0, and Re=10,000.
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FIG. 5. (d) Residual convergence history versus time steps for flat plate using different schemes: exg
matrix-free LU-SGS, and matrix-free GMRES+LU-SGS. (e) Residual convergence history versus cpu tim
flat plate using different schemes: explicit, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS.

4c, and 4d, respectively. Figures 4e and 4f illustrate the convergence history among d
ent numerical schemes: matrix-free LU-SGS, matrix-free GMRES+LU-SGS, and exp
methods, respectively. It indicates that the GMRES+LU-SGS method is superior to
LU-SGS method. CPU time comparison shows that the GMRES+LU-SGS method is a
eight time faster than the explicit method for this particular problem.

E. Laminar Flow Past a Flat Plate

In this test case, Blasius boundary layers are computed for a flat plate at a Mach nui
of 0.4 and a chord Reynolds humber of 10,000. The computational domain is consid
fromx=—-0.5tox=1,y=0toy=1, andz=0toz=0.5, where the plate startsxat=0.
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The mesh used in the computation is shown in Fig. 5a. It contains 81,885 elements, 1°
points, and 3774 boundary points. The computed Mach number contours in the flow
are depicted in Fig. 5b, where the development of a boundary layer can be clearly obse
Figure 5¢ shows the comparison of the Blasius velocity profile and the computed velc
profiles as scaled by the Blasius similarity law for all boundary layer points. The Blas
velocity profile is almost identically matched by all data points with the exception of
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FIG. 6. (a) Surface mesh used for NACA0012 airfoil configuration (nelef97,655, npoir= 128,448,
nboun=22,925). (b) Computed velocity vector distribution near leading edge of airfoilatN.5, o = 0.0, and
Re=5,000.
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FIG. 6. (c) Computed pressure contours on the surfaceat&M.5, « = 0.0, and Re=5,000. (d) Computed
Mach number contours on the surface at M 0.5, « = 0.0, and Re=5,000.

few points near leading edge. The slight discrepancy for these points is attributed tc
leading edge singularity. Figures 5d and 5e show a comparison of convergence hist
among different numerical schemes: matrix-free LU-SGS, matrix-free GMRES+LU-S(
and explicit methods, respectively. Itindicates that the GMRES+LU-SGS method is supe
to the LU-SGS method. CPU time comparison shows that the GMRES+LU-SGS met
is about 10 times faster than the explicit method for this particular problem.

F. Laminar Flow over a NACA0012 Airfoil

This test case involves a laminar flow past a NACA0012 airfoil at a Mach number
0.5, an angle of attack ofQand a chord Reynolds number of 5000. This computation w
performed to see the effectiveness of the present matrix-free GMRES+LU-SGS metho
the solution of the Navier—Stokes equations. The mesh used in the computation is sl
in Fig. 6a. It contains 697,655 elements, 128,488 grid points, and 22,925 boundary pc
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FIG. 6. (e) Residual convergence history versus time steps for NACA0012 airfoil using different schen
explicit, matrix-free LU-SGS, and matrix-free GMRES+LU-SGS. (f) Residual convergence history versus cpu
for NACA0012 airfoil using different schemes: explicit, matrix-free LU-SGS, and matrix-free GMRES+LU-SG

The computed velocity vector distribution in the vicinity of the trailing edge of the airfc
is shown in Fig. 6b, where the separation and a small recirculation bubble can be cle
observed. The computed separation point is at 81.6% chord, which compares well t
one obtained by Mavriplis [22]. The computed pressure and Mach-number contours
shown in Figs. 6¢ and 6d, respectively. Figures 6e and 6f illustrate the convergence hi
among different numerical schemes: matrix-free LU-SGS, matrix-free GMRES+LU-S(
and explicit methods, respectively. It indicates that the GMRES+LU-SGS method is
superior to the LU-SGS method. CPU time comparison shows that the GMRES+LU-£
method is more than two orders of magnitude faster than the explicit method for
particular problem. The effectiveness of the present matrix-free GMRES+LU-SGS met
for the solution of the Navier—Stokes equations is clearly demonstrated in this exampl
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6. CONCLUSIONS

A matrix-free implicit method has been developed to solve the three-dimensional Nav
Stokes and Euler equations on unstructured meshes. The developed method has bee
to compute the compressible flows around 3D complex aerodynamic configurations
wide range of flow conditions from subsonic to supersonic. The numerical results obta
indicate that the use of the GMRES+LU-SGS method leads to a significant increas
performance over the best current implicit methods, the GMRES+ILU and the LU-S
methods, while maintaining memory requirements that are competitive with its expl
counterpart. In comparison to the explicit method, we demonstrate an overall spe
factor from eight to more than one order of magnitude for all test cases. The GMRE
LU-SGS method has also been extended and applied successfully to solve the uns
Euler and Navier—Stokes equations and will be reported in a later paper. The current
is to extend the present GMRES+LU-SGS method for turbulent flow problems.
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